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Abstract 
In this work theoretical method based on classical mechanics, Maxwell equations and quantum mechanics is utilized 

to find the mathematical expression for relaxation time, this expression play an important role in the simulation of 

quantum semiconductor devices .One has studied the relaxation time in the semi classical approximation, the optical 

potential, perturbation method and generalized Schrödinger Equation for relaxation time. Theoretical relation 

between the relaxation time and absorption coefficient is obtained. At last one has studied the quantum mechanical 

absorption coefficient, absorption coefficient for Maxwell’s equations and quantum mechanics, and parameters 

affecting absorption coefficient.  
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     Introduction 
Semi conductors (sc) play an important role in our 

day life. They are widely used in electronic devices 

like computers, mobiles, televisions, solar cells and 

sensors. The physics of semi conductors are 

presented in many standard texts [1,2]. The optical 

properties of (sc) are an important factor in 

understanding the performance of optical sensors and 

solar cells. These properties are based on the 

interaction of electromagnetic waves (e.m.w) with 

matter. The optical properties of semiconductors 

provide an important tool for studying energy band 

structure, impurity levels, excitations, localized 

defects, lattice vibrations, and certain magnetic 

excitations.  

 

The efficiency of a solar cell is dependent on the 

optical absorption of the semiconductor used to 

fabricate the solar cell. In bulk crystalline materials 

and even in thin films, the bulk absorption coefficient 

is the most important parameter that determines the 

optical absorption. Classical models such as Drude 

model or Drude-Lorentz model describe the optical 

absorption based on the complex dielectric function 

[5,9]. This approach works very well for the 

absorption of photons by the electrons inside a band, 

for example, conduction band. However, from band 

to band excitation of electrons, a detailed 

understanding of the band structure of the material is 

essential. To calculate optical absorption in 

semiconductors, one has to invoke quantum 

mechanical models using Schrodinger's wave 

equation [2, 6].  

 

When a radiation beam or particle beam enters a 

medium its intensity decreases due to the decrease in 

its energy per particle and due to decrease of the 

number of particles. This indicates the existence of a 

resistive force which causes these changes. The time 

taken by a particle on the beam to stop is called 

relaxation time (τ). The relaxation time is defined as 

a time between two successive collisions. This 

relaxation time can be obtained by different quantum 

methods. 

 

The relaxation time is an important parameter of 

obtaining the electrical optical properties of 

semiconductors. There some techniques, such as 

optical potential, for the determination of the 

relaxation time, but it is important to simply 

determine the relaxation time by a different methods. 

These methods are presented by expectation value, 

perturbation method, optical potential, and 

Schrödinger Equation. These methods generate a new 

mathematical formula for relaxation time.  
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Generalized schrödinger equation for relaxation time 
Recently same attempts are made to modify and generalize Schrödinger equation to start from the wave function 

inside matter instead of free space. This model is utilized to construct a new energy band theory. The inclusion of 

the effect of matter in this theory gives a motivation to try to see the form of energy and effective mass inside 

matter. According to this model the upper conduction energy band edge is given by: [ 69 ] 
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Utilizing equation (3.17) and (3) one gets 
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Thus the relaxation time can be given by (2.5) to be  
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             Or the relaxation time can given by equation below :-  
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Quantum relaxation time and absorption coefficient 
When a radiation beam or particle beam enters a medium its intensity decreases due to the decrease in its energy per 

particle and  due to decrease of the number of particles. This indicates the existence of a resistive force which causes 

these changes. The time taken by a particle on the beam to stop is called relaxation time (τ). τ is defined as a time 

between two successive collisions. This relaxation time can be obtained by different quantum methods. For instance 

one can use perturbation method to find the change in particle energy due to a resistive potential. For simplicity 

assume the perturbing part of Hamiltonian 1Ĥ  to be a constant i.e.: 

                     01
ˆ VH                                                                           (3.1) 

In this case the perturbation, i.e. change in energy is given by: 

                      00011 )()ˆ( VdrUUVdrUVUHE kkkkkk      (3.2) 

Where the total energy E is given by: 

                  1EEE k                                                                         (3.3) 

The energy change is given by: 
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               01 VEE                                                                      (3.4) 

According to uncertainty principle the relaxation time is given by: 
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Here relaxation time means the time taken by the particle in the perturbed excited state. This equation indicates that 

the strong resistive force 0V , causes the relaxation time to be short 0 which is in conformity with 

commonsense.  

Relaxation time can also be obtained by utilizing the optical potential VI which is introduced to account for particle 

energy losses in inelastic scattering where the wave function of the free particle takes the form: 
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For constant optical potential: 

          tconsVI tan                                                                      (3.7) 

The current density ĵ  and hence the bam intensity I are given by: 
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Thus using (3.6) and (3.7) yields: 
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The time τ taken by the beam to decrease can be defined to be:  
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Again the expression for the relaxation time τ resembles that obtained perturbation method. The two expressions 

coincide if one sets:  

       0
2

1
VVI   

In this case:  
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The relaxation time can also be obtained quantum mechanically, if one treats atoms and electrons as harmonic 

oscillators subjected to resistive force v  beside the restoring force xk0  in this case the total force is given by: 

      xmwma 2 vxk  0                                                            (3.12) 
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Treating atoms as harmonic oscillators, the force is given by: 

                    xkkxF )( 00                                           (3.16) 

And utilizing Schrödinger equation for harmonic oscillator the energy is given by: 
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When the resistive force xFr 0  dominate i.e: 

               0000 ............................. kxkxFFr    

Thus the energy can be written as: 
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In this case the time dependent part of Schrödinger equation becomes: 
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For decaying one chooses the minus sign to get: 
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Thus the intensity of the beam becomes: 

           
twtw

eIwveAI

wvwnvI

00 2

0

22

2








 
                                                          (3.24) 

The relaxation time is given by: 
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For very strong resistive force: 
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Again strong resistive force causes relaxation time to be short. Relaxation time can also be found by using semi 

classical approximation. For electrons subjected to only coulomb electric force of the nucleus Fe the equation of 

motion of the electron becomes: 
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When a magnetic field of the flux density B and a resistive force vFr  are taken into account the equation of 

motion of the electron becomes: 
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Using uncertainty relation and treating the electron and the atom as harmonic oscillators, the energy change, thus 

takes the form: 
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And the relaxation time reads: 
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Quantum mechanical absorption coefficient 
The absorption coefficient can also be obtained by using the wave function of the photon which takes from [36 ] 
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The density of photons is given by: 
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Thus the radiation intensity is given by: 
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When photons enter matter k is replaced by k
~

. As a result the wave function is given by: 
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The wave vector inside matter can be found with the aid of (3.22) to be: 
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Hence the wave function takes the form: 
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Therefore the intensity is given by: 
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But since: 
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It follows that the absorption coefficient is given by: 

                 2kx                                                                                               (4.9) 

In view of relations (3.9) and (3.11) one gets: 
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In view of (3.18) the above equation reads: 
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Where: 
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Thus the absorption coefficient is given by: 
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In the case when B,F0 and μr are small, equation (4.13) becomes: 
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But if B and μr are extremely large, the absorption coefficient can thus given by: 
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Absorption coefficient from maxwell’s equations and quantum mechanics 
Maxwell’s equations can be utilities to find the electric susceptibility. According to these equations the electric field 

satisfies:  
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Let the solution be in the form: 
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Substituting (5.2) in (5.1) yields: 
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As a result the electric susceptibility is given by: 
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The real and complex parts can take the form: 
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Where the relative magnetic permittivity satisfies the relation: 

     0 r                                                                                            (5.7) 

According to equation (3.22) the wave number is given by: 
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The conductivity σ is also given by: 
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As a result the wave function in the medium takes the form: 
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The intensity can thus be given to be: 
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Therefore the absorption coefficient with the aid of (3.18) can be given by: 
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It is clear that the absorption coefficient depends on the wave number k.  

 

Parameters affecting absorption coefficient 
The conductivity and absorption coefficient γ are related, according to the relation[ 48 ] 
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Where μ stands for the magnetic permeability, σ represents the conductivity while n1 is the refractive index. The 

photo conductivity is thus expressed in terms of the relaxation time and effective mass, according to the relation 

(6.2). The absorption coefficient is thus given by 

                 

2

*

1

c ne

m n

 
                                                                     (6.3) 

According to equations (3.26) the absorption coefficient is k dependent through m* and it goes like    
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Equation (4.15) shows that the effective mass affects α to go like: 
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The absorption coefficient is also dependent on the K via the effective mass where equation (5.9) yields: 
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The relaxation time is dependent on the magnetic flux density as shown by equations (3.36) 

In view of equations (6.1), (6.2) and (6.3) 

                         
1

Be






                                                                 (6.7) 

With the aid of (6.3) the absorption coefficient is directly related to K as shown by equations (3.26) [beside (4.14)], 

(3.15) ), (5,10)  and (5.6) respectively: 

                       
3k                                                                               (6.8) 

                       k                                                                                 (6.9) 

                       
4k                                                                                (6.10) 

                       
5k                                                                                (6.11) 

                      
2k                                                                                 (6.12) 

The absorption coefficient is also proportional to the concentration of impurities N since it is proportional to free 

carries concentration n as shown by equation   (6.3) 

                 n N                                                                       (6.13) 

It is also affected by magnetic material via μ, where  

                                                                                                (6.14) 

The effect of the magnetic properties on the a absorption coefficient can also be obtained with the aid of equations 

(3.22 ) and (3.23) to get 

               
2

1

2 c

n

  
                                                     (6.15)  

Bearing in mind Langven expression for Larmer frequency [ 67 ] 

             
2

L

Be

m
                                                                (6.16) 

The absorption coefficient takes the form  

 

            
2

1

2

2

c Be

n m

 
                                                             (6.17) 

The effect of spin and orbital angular momention can be incorporated via the atomic magnetic moment beside the 

magnetization vector (M) which is given according to quantum paramagnetic theory as [ 59 ]  
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2 2 2

sng m
M H H

kT


                                                  (6.18) 

Thus the absorption coefficient is related to the spin quantum number 
sm via the magnetic susceptibility. Where g is 

the splitting factor and 
B  is called Bohr agnation.  

 

Discussion   
Equation (2.7) , show the quantum expression of relaxation time as a function of the photon energy , this expression 

play an important role in the simulation of quantum semiconductor devices . 

From equation (6.3) , we find that ( when ( 𝜏 = 𝑜 , 𝑡ℎ𝑒𝑛   𝛼 = 0 ), 𝑎𝑛𝑑  𝑎𝑠  𝜏 = ∞ , 𝛼 = ∞ ) , this means , when the 

relaxation time increases , the optical absorption coefficient increases .  

Equation (3.5) indicates that the strong resistive force 0V , causes the relaxation time to be short 

0 which is in conformity with commonsense.  

Equation (3.36), show that, the relaxation time is dependent on the magnetic flux density.  

From the expression [𝜏 =  √[ (∇𝑘
2𝐸) (

4ħ

𝑚𝑛1
4) |𝐶1|2 (

𝑒4

𝑚2) (4𝜋𝑁𝐷)2 (
𝛽

4𝜋𝑛
)

3

 ħ4 𝑘2]⁄  ,and 

equation (6.3) ,we find that ,[ when 𝐸 → 𝑂   , 𝜏 → 0  , 𝛼 → 0 , 𝑚𝑒𝑎𝑛𝑠 𝑛𝑜 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 ] , the light travels through the 

semiconductor material , [ when 𝐸 ≫ 𝑂   , 𝜏 ≫ 0  , 𝛼 ≫ 0 , 𝑚𝑒𝑎𝑛𝑠  𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 .  

The relaxation time is dependent on the magnetic flux density as shown by equations (3.36) . 

Equation (6.9) shows that the absorption coefficient dependent on the wave vector (K) .

  

Conclusion         
The mathematical model for the relaxation time 

expressed in terms of quantum mechanics 

expectation value , this model play an important role 

in the simulation of quantum semiconductor devices . 

From our result it is clear that the relaxation time 

affects on the absorption coefficient of 

semiconductors, also the relaxation time is dependent 

on the magnetic flux density. Also our results 

indicate that the optical absorption coefficient 

depends on the wave vector ( K ) . The coefficient ( 

K ) is an optical property of the semiconductor 

material , and is related to the index of refraction  ( n 

) , which merely determines how much light is 

absorbed by the semiconductor  material ,   𝑖𝑓  𝑘 >
  0  𝑚𝑒𝑎𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 , 𝑘 = 𝑜  , 𝑛𝑜 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛 
(The light travels through  semiconductor material ) . 
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